A multi-species benchmark for training and validating mass spectrometry proteomics machine learning models.

Journal: Scientific data
Published Date:

Abstract

Training machine learning models for tasks such as de novo sequencing or spectral clustering requires large collections of confidently identified spectra. Here we describe a dataset of 2.8 million high-confidence peptide-spectrum matches derived from nine different species. The dataset is based on a previously described benchmark but has been re-processed to ensure consistent data quality and enforce separation of training and test peptides.

Authors

  • Bo Wen
  • William Stafford Noble
    1] Department of Computer Science and Engineering, University of Washington, 185 Stevens Way, Seattle, Washington 98195-2350, USA. [2] Department of Genome Sciences, University of Washington, 3720 15th Ave NE Seattle, Washington 98195-5065, USA.