Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Journal: Journal of molecular modeling
Published Date:

Abstract

CONTEXT: This study investigates the potential of leveraging molecular properties, as determined by MD-LOVIs software and machine learning techniques, to predict the ability of compounds to cross the blood-brain barrier (BBB). Accurate prediction of BBB permeation is critical for the development of central nervous system (CNS) drugs. The study applies various machine learning models, including both classification and regression techniques, to predict BBB passage and molecular activity. Notably, classification models such as GBM-AWV (accuracy = 0.801), GLM-CN (accuracy = 0.808), SVMPoly-means (accuracy = 0.980), SVMPoly-AC (accuracy = 0.980), SVMPoly-MI_TI_SI (accuracy = 0.900), SVMPoly-GI (accuracy = 0.900), RF-means (accuracy = 0.870), and GLM-means (accuracy = 0.818) demonstrate high accuracy in predicting BBB passage. In contrast, regression models like ES-RLM-AG (R = 0.902), IB-IBK (R = 0.82), IB-Kstar (R = 0.834), IB-MLP (R = 0.843), and DRF-AWV (R = 0.810) exhibit strong performance in predicting molecular activity. The results show that classification models like GBM-AWV, GLM-CN, and SVMPoly variants, as well as regression models like ES-RLM-AG and IB-MLP, achieve high performance, demonstrating the effectiveness of machine learning in predicting BBB permeability.

Authors

  • Yoan Martínez-López
    Department of Computer Sciences, Faculty of Informatics, Camagüey University, 74650, Camagüey City, Cuba. ymlopez2022@gmail.com.
  • Paulina Phoobane
    Walter Sisulu University, Mthatha, Eastern Cape, Republic of South Africa.
  • Yanaima Jauriga
    Department of Computer Sciences, Faculty of Informatics, Camagüey University, 74650, Camagüey City, Cuba.
  • Juan A Castillo-Garit
    Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago, Chile.
  • Ansel Y Rodríguez-Gonzalez
    Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE-UT3), Unidad de Transferencia Tecnológica de Tepic, Tepic, México.
  • Oscar Martínez-Santiago
    Alfa Vitamins Laboratories, Miami, FL, 33166, USA.
  • Stephen J Barigye
    Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain. sjbarigye@gmail.com.
  • Julio Madera
    Department of Computer Sciences, Faculty of Informatics, Camagüey University, 74650, Camagüey City, Cuba.
  • Noel Enrique Rodríguez-Maya
    División de Estudios de Posgrado E Investigación, Instituto Tecnológico de Zitácuaro, Zitácuaro, Michoacán, Mexico.
  • Pablo Duchowicz
    Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), La Plata, Argentina.