Understanding Parkinson's: The microbiome and machine learning approach.

Journal: Maturitas
Published Date:

Abstract

OBJECTIVE: Given that Parkinson's disease is a progressive disorder, with symptoms that worsen over time, our goal is to enhance the diagnosis of Parkinson's disease by utilizing machine learning techniques and microbiome analysis. The primary objective is to identify specific microbiome signatures that can reproducibly differentiate patients with Parkinson's disease from healthy controls.

Authors

  • David Rojas-Velazquez
    Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Universiteitsweg 99, Utrecht 3508 TB, the Netherlands; Department of Data Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3508 GA, the Netherlands. Electronic address: e.d.rojasvelazquez@uu.nl.
  • Sarah Kidwai
    Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Universiteitsweg 99, Utrecht 3508 TB, the Netherlands.
  • Ting Chia Liu
    Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Universiteitsweg 99, Utrecht 3508 TB, the Netherlands.
  • Mounim A El-Yacoubi
    Samovar/Télécom SudParis, Institut Polytechnique de Paris, 91120, Palaiseau, France. mounim.el_yacoubi@telecom-sudparis.eu.
  • Johan Garssen
    Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
  • Alberto Tonda
    UMR 782 GMPA, Université Paris-Saclay, INRA, AgroParisTech, Thiverval-Grignon, France.
  • Alejandro Lopez-Rincon
    Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, David de Wied building,Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands. alejandro.lopez@iscpif.fr.