Prediction of new-onset atrial fibrillation in patients with hypertrophic cardiomyopathy using machine learning.
Journal:
European journal of heart failure
PMID:
39694602
Abstract
AIMS: Atrial fibrillation (AF) is the most common sustained arrhythmia among patients with hypertrophic cardiomyopathy (HCM), leading to increased symptom burden and risk of thromboembolism. The HCM-AF score was developed to predict new-onset AF in patients with HCM, though sensitivity and specificity of this conventional tool are limited. Thus, there is a need for more accurate tools to predict new-onset AF in HCM. The objective of the present study was to develop a better model to predict new-onset AF in patients with HCM using machine learning (ML).