Deep learning detected histological differences between invasive and non-invasive areas of early esophageal cancer.

Journal: Cancer science
PMID:

Abstract

The depth of invasion plays a critical role in predicting the prognosis of early esophageal cancer, but the reasons behind invasion and the changes occurring in invasive areas are still not well understood. This study aimed to explore the morphological differences between invasive and non-invasive areas in early esophageal cancer specimens that have undergone endoscopic submucosal dissection (ESD), using artificial intelligence (AI) to shed light on the underlying mechanisms. In this study, data from 75 patients with esophageal squamous cell carcinoma (ESCC) were analyzed and endoscopic assessments were conducted to determine submucosal (SM) invasion. An AI model, specifically a Clustering-constrained Attention Multiple Instance Learning model (CLAM), was developed to predict the depth of cancer by training on surface histological images taken from both invasive and non-invasive regions. The AI model highlighted specific image portions, or patches, which were further examined to identify morphological differences between the two types of areas. The 256-pixel AI model demonstrated an average area under the receiver operating characteristic curve (AUC) value of 0.869 and an accuracy (ACC) of 0.788. The analysis of the AI-identified patches revealed that regions with invasion (SM) exhibited greater vascularity compared with non-invasive regions (epithelial). The invasive patches were characterized by a significant increase in the number and size of blood vessels, as well as a higher count of red blood cells (all with p-values <0.001). In conclusion, this study demonstrated that AI could identify critical differences in surface histopathology between non-invasive and invasive regions, particularly highlighting a higher number and larger size of blood vessels in invasive areas.

Authors

  • Akiko Urabe
    Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.
  • Masahiro Adachi
    Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan.
  • Naoya Sakamoto
    Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo 0608638, Japan.
  • Motohiro Kojima
    Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, 277-8577, Japan.
  • Shumpei Ishikawa
    Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. ishum-prm@m.u-tokyo.ac.jp.
  • Genichiro Ishii
    Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan.
  • Tomonori Yano
    Department of Gastroenterology and Endoscopy National Cancer Center Hospital East Chiba Japan.
  • Shingo Sakashita
    Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan. ssakashi@east.ncc.go.jp.