AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Neoplasm Invasiveness

Showing 1 to 10 of 171 articles

Clear Filters

A Deep Reinforcement Learning-Based Feature Selection Method for Invasive Disease Event Prediction Using Imbalanced Follow-Up Data.

IEEE journal of biomedical and health informatics
The machine learning-based model is a promising paradigm for predicting invasive disease events (iDEs) in breast cancer. Feature selection (FS) is an essential preprocessing technique employed to identify the pertinent features for the prediction mod...

Preoperative diagnosis of meningioma sinus invasion based on MRI radiomics and deep learning: a multicenter study.

Cancer imaging : the official publication of the International Cancer Imaging Society
OBJECTIVE: Exploring the construction of a fusion model that combines radiomics and deep learning (DL) features is of great significance for the precise preoperative diagnosis of meningioma sinus invasion.

Gd-EOB-DTPA-enhanced MRI radiomics and deep learning models to predict microvascular invasion in hepatocellular carcinoma: a multicenter study.

BMC medical imaging
BACKGROUND: Microvascular invasion (MVI) is an important risk factor for early postoperative recurrence of hepatocellular carcinoma (HCC). Based on gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance ...

Deep learning on T2WI to predict the muscle-invasive bladder cancer: a multi-center clinical study.

Scientific reports
To develop a deep learning (DL) model based on MRI to predict muscle-invasive bladder cancer (MIBC). A total of 559 patients, including 521 patients in our center and 38 patients in external centers were collected from 2012 to 2023 to construct the D...

Exploring Mechanisms and Biomarkers of Breast Cancer Invasion and Migration: An Explainable Gene-Pathway-Compounds Neural Network.

Cancer medicine
BACKGROUNDS: Exploring the molecular features that drive breast cancer invasion and migration remains an important biological and clinical challenge. In recent years, the use of interpretable machine learning models has enhanced our understanding of ...

Radiomics and machine learning models for diagnosing microvascular invasion in cholangiocarcinoma: a systematic review and meta-analysis of diagnostic test accuracy studies.

Clinical imaging
PURPOSE: We aimed to systematically assess the value of radiomics/machine learning (ML) models for diagnosing microvascular invasion (MVI) in patients with cholangiocarcinoma (CCA) using various radiologic modalities.

Robust vs. Non-robust radiomic features: the quest for optimal machine learning models using phantom and clinical studies.

Cancer imaging : the official publication of the International Cancer Imaging Society
PURPOSE: This study aimed to select robust features against lung motion in a phantom study and use them as input to feature selection algorithms and machine learning classifiers in a clinical study to predict the lymphovascular invasion (LVI) of non-...

Preoperative lymph node metastasis risk assessment in invasive micropapillary carcinoma of the breast: development of a machine learning-based predictive model with a web-based calculator.

World journal of surgical oncology
BACKGROUND: Invasive micropapillary carcinoma (IMPC) is a rare subtype of breast cancer characterized by a high risk of lymph node metastasis (LNM). The study aimed to identify predictors of LNM and to develop a machine learning (ML)-based risk predi...

Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer patients.

Scientific reports
Muscle-Invasive Bladder Cancer (MIBC) is a more aggressive disease than non-muscle-invasive bladder cancer (NMIBC), with greater chances of metastasis. We sought to develop machine learning (ML) models to predict metastasis and prognosis in MIBC pati...