Transformative laboratory medicine enabled by microfluidic automation and artificial intelligence.

Journal: Biosensors & bioelectronics
PMID:

Abstract

Laboratory medicine provides pivotal medical information through analyses of body fluids and tissues, and thus, it is essential for diagnosis of diseases as well as monitoring of disease progression. Despite its universal importance, the field is currently suffering from the limited workforce and analytical capabilities due to the increasing pressure from expanding global population and unexpected rise of noncommunicable diseases. The emerging technologies of microfluidic automation and artificial intelligence (AI) has led to the development of advanced diagnostic platforms, positioning themselves as adaptable solutions to enable highly efficient and accessible laboratory medicine. In this review, we will provide a comprehensive review of microfluidic automation, focusing on the microstructure design and automation principles, along with its intended functionalities for diagnostic purposes. Subsequently, we exemplify the integration of AI with microfluidics and illustrating how their combination benefits for the applications and what the challenges are in this rapidly evolving field. Finally, the review offers a balanced perspective on the microfluidics and AI, discussing their promising role in advancing laboratory medicine.

Authors

  • Pijiang Huang
    School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China.
  • Huaize Lan
    School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China.
  • Binyao Liu
    School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China.
  • Yuhao Mo
    School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China.
  • Zhuangqiang Gao
    Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China. Electronic address: zhuangqiang.gao@szu.edu.cn.
  • Haihang Ye
    School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China.
  • Tingrui Pan