Deep learning based super-resolution for CBCT dose reduction in radiotherapy.
Journal:
Medical physics
PMID:
39625126
Abstract
BACKGROUND: Cone-beam computed tomography (CBCT) is a crucial daily imaging modality in image-guided and adaptive radiotherapy. However, the use of ionizing radiation in CBCT imaging increases the risk of secondary cancers, which is particularly concerning for pediatric patients. Deep learning super-resolution has shown promising results in enhancing the resolution of photographic and medical images but has not yet been explored in the context of CBCT dose reduction.