AlzyFinder: A Machine-Learning-Driven Platform for Ligand-Based Virtual Screening and Network Pharmacology.

Journal: Journal of chemical information and modeling
PMID:

Abstract

Alzheimer's disease (AD), a prevalent neurodegenerative disorder, presents significant challenges in drug development due to its multifactorial nature and complex pathophysiology. The AlzyFinder Platform, introduced in this study, addresses these challenges by providing a comprehensive, free web-based tool for parallel ligand-based virtual screening and network pharmacology, specifically targeting over 85 key proteins implicated in AD. This innovative approach is designed to enhance the identification and analysis of potential multitarget ligands, thereby accelerating the development of effective therapeutic strategies against AD. AlzyFinder Platform incorporates machine learning models to facilitate the ligand-based virtual screening process. These models, built with the XGBoost algorithm and optimized through Optuna, were meticulously trained and validated using robust methodologies to ensure high predictive accuracy. Validation included extensive testing with active, inactive, and decoy molecules, demonstrating the platform's efficacy in distinguishing active compounds. The models are evaluated based on balanced accuracy, precision, and F1 score metrics. A unique soft-voting ensemble approach is utilized to refine the classification process, integrating the strengths of individual models. This methodological framework enables a comprehensive analysis of interaction data, which is presented in multiple formats such as tables, heat maps, and interactive Ligand-Protein Interaction networks, thus enhancing the visualization and analysis of drug-protein interactions. AlzyFinder was applied to screen five molecules recently reported (and not used to train or validate the ML models) as active compounds against five key AD targets. The platform demonstrated its efficacy by accurately predicting all five molecules as true positives with a probability greater than 0.70. This result underscores the platform's capability in identifying potential therapeutic compounds with high precision. In conclusion, AlzyFinder's innovative approach extends beyond traditional virtual screening by incorporating network pharmacology analysis, thus providing insights into the systemic actions of drug candidates. This feature allows for the exploration of ligand-protein and protein-protein interactions and their extensions, offering a comprehensive view of potential therapeutic impacts. As the first open-access platform of its kind, AlzyFinder stands as a valuable resource for the AD research community, available at http://www.alzyfinder-platform.udec.cl with supporting data and scripts accessible via GitHub https://github.com/ramirezlab/AlzyFinder.

Authors

  • Jessica Valero-Rojas
    Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile.
  • Camilo Ramírez-Sánchez
    Facultad de Ingeniería, Diseño e Innovación, Institución Universitaria Politécnico Gran Colombiano, Bogotá 110231, Colombia.
  • Laura Pacheco-Paternina
    Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile.
  • Paulina Valenzuela-Hormazábal
    Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile.
  • Fernanda I Saldivar-González
    Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México.
  • Paula Santana
    Facultad de Ingeniería, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Santiago 8910060, Chile.
  • Janneth González
    Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia.
  • Tatiana Gutiérrez-Bunster
    Departamento de Sistemas de Información, Facultad de Ciencias Empresariales, Universidad del Bío-Bío, Concepción 4051381, Chile.
  • Alejandro Valdés-Jiménez
    Departamento de Sistemas de Información, Facultad de Ciencias Empresariales, Universidad del Bío-Bío, Concepción 4051381, Chile.
  • David Ramírez
    Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile.