DML-MFCM: A multimodal fine-grained classification model based on deep metric learning for Alzheimer's disease diagnosis.
Journal:
Journal of X-ray science and technology
PMID:
39973767
Abstract
BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder. There are no drugs and methods for the treatment of AD, but early intervention can delay the deterioration of the disease. Therefore, the early diagnosis of AD and mild cognitive impairment (MCI) is significant. Structural magnetic resonance imaging (sMRI) is widely used to present structural changes in the subject's brain tissue. The relatively mild structural changes in the brain with MCI have led to ongoing challenges in the task of conversion prediction in MCI. Moreover, many multimodal AD diagnostic models proposed in recent years ignore the potential relationship between multimodal information.