Exposure experiments and machine learning revealed that personal care products can significantly increase transdermal exposure of SVOCs from the environment.

Journal: Journal of hazardous materials
PMID:

Abstract

We investigated the impacts of personal care products (PCPs) on dermal exposure to semi-volatile organic compounds (SVOCs), including phthalates, organophosphate esters, polycyclic aromatic hydrocarbons (PAHs), ultraviolet filters, and p-phenylenediamines, through an experiment from volunteers, explored the impact mechanisms of PCP ingredients on dermal exposure, and predicted the PCP effects on SVOC concentrations in human serum using machine learning. After applying PCPs, namely lotion, baby oil, sunscreen, and blemish balm, the dermal adsorption of SVOCs increased significantly by 1.63 ± 0.62, 1.97 ± 0.73, 1.91 ± 0.48, and 2.03 ± 0.59 times, respectively, probably due to the absorption effects of PCP ingredients. Ingredient tocopherol can increase dermal adsorption of SVOCs by 2.59 ± 1.60 times. PCPs can either increase or decrease the SVOC transdermal exposure risks, depending on the properties of their ingredients. Blemish balm caused the highest hazard quotient for certain SVOCs, while tris(2-chloroethyl) phosphate (TCEP) exhibited the highest hazard quotient. We predicted the SVOC concentrations in serum before and after applying PCPs based on the PCP-increased skin permeation doses and machine learning. PCPs can significantly increase the serum concentrations of PAHs with 2-3 rings and TCEP. This study first revealed that PCPs can significantly increase the dermal exposure of SVOCs from the surroundings, resulting in potentially higher health risks.

Authors

  • Zihao Zhang
    Institute for Hospital Management, Tsinghua University, Beijing, China.
  • Yan Wang
    College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China.
  • Timothy F M Rodgers
    Department of Civil Engineering, University of British Columbia, Vancouver V6T 1Z4, Canada.
  • Yubin Wu
    Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.