AntiT2DMP-Pred: Leveraging feature fusion and optimization for superior machine learning prediction of type 2 diabetes mellitus.

Journal: Methods (San Diego, Calif.)
PMID:

Abstract

Pancreatic α-amylase breaks down starch into isomaltose and maltose, which are further hydrolyzed by α-glucosidase in the intestine into monosaccharides, rapidly raising blood sugar levels and contributing to type 2 diabetes mellitus (T2DM). Synthetic inhibitors of carbohydrate-digesting enzymes are used to manage T2DM but may harm organ function over time. Bioactive peptides offer a safer alternative, avoiding such adverse effects. Computational methods for predicting antidiabetic peptides (ADPs) can significantly reduce the time and cost of experimental testing. While machine learning (ML) has been applied to identify ADPs, advancements in data analysis and algorithms continue to drive progress in the field. To address this, we developed AntiT2DMP-Pred, the first ML-based tool specifically designed for predicting type 2 antidiabetic peptides (T2ADPs). This tool employs a feature fusion strategy, combining ten highly discriminative feature descriptors chosen from a pool of 32 descriptors and eight ML algorithms, tested across a range of baseline models. AntiT2DMP-Pred demonstrated excellent performance, surpassing both baseline and feature-optimized models, with an accuracy (ACC) and Matthews' correlation coefficient (MCC) of 0.976 and 0.953 on the training dataset, and an ACC and MCC of 0.957 and 0.851 on the independent dataset. The web server (https://balalab-skku.org/AntiT2DMP-Pred) is freely accessible, enabling researchers worldwide to utilize it in their experimental workflows and contribute to the discovery and understanding of T2ADPs, ultimately supporting peptide-based therapeutic development for diabetes management.

Authors

  • Shaherin Basith
    Department of Physiology, Ajou University School of Medicine, Suwon, Korea.
  • Balachandran Manavalan
    Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea.
  • Gwang Lee
    Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea.