A machine learning model accurately identifies glycogen storage disease Ia patients based on plasma acylcarnitine profiles.
Journal:
Orphanet journal of rare diseases
PMID:
39789579
Abstract
BACKGROUND: Glycogen storage disease (GSD) Ia is an ultra-rare inherited disorder of carbohydrate metabolism. Patients often present in the first months of life with fasting hypoketotic hypoglycemia and hepatomegaly. The diagnosis of GSD Ia relies on a combination of different biomarkers, mostly routine clinical chemical markers and subsequent genetic confirmation. However, a specific and reliable biomarker is lacking. As GSD Ia patients demonstrate altered lipid metabolism and mitochondrial fatty acid oxidation, we built a machine learning model to identify GSD Ia patients based on plasma acylcarnitine profiles.