Towards Rapid and Low-Cost Stroke Detection Using SERS and Machine Learning.

Journal: Biosensors
PMID:

Abstract

Stroke affects approximately 12 million individuals annually, necessitating swift diagnosis to avert fatal outcomes. Current hospital imaging protocols often delay treatment, underscoring the need for portable diagnostic solutions. We have investigated silver nanostars (AgNS) incubated with human plasma, deposited on a simple aluminum foil substrate, and utilizing Surface-Enhanced Raman Spectroscopy (SERS) combined with machine learning (ML) to provide a proof-of-concept for rapid differentiation of stroke types. These are the seminal steps for the development of low-cost pre-hospital diagnostics at point-of-care, with potential for improving patient outcomes. The proposed SERS assay aims to classify plasma from stroke patients, differentiating hemorrhagic from ischemic stroke. Silver nanostars were incubated with plasma and spiked with glial fibrillary acidic protein (GFAP), a biomarker elevated in hemorrhagic stroke. SERS spectra were analyzed using ML to distinguish between hemorrhagic and ischemic stroke, mimicked by different concentrations of GFAP. Key innovations include optimized AgNS-plasma incubates formation, controlled plasma-to-AgNS ratios, and a low-cost aluminum foil substrate, enabling results within 15 min. Differential analysis revealed stroke-specific protein profiles, while ML improved classification accuracy through ensemble modeling and feature engineering. The integrated ML model achieved rapid and precise stroke predictions within seconds, demonstrating the assay's potential for immediate clinical decision-making.

Authors

  • Cristina Freitas
    Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal.
  • João Eleutério
    COPELABS-Departamento de Engenharia Informática e Sistemas de Informação, Universidade Lusófona, Centro Universitário de Lisboa, 1749-024 Lisboa, Portugal.
  • Gabriela Soares
    COPELABS-Departamento de Engenharia Informática e Sistemas de Informação, Universidade Lusófona, Centro Universitário de Lisboa, 1749-024 Lisboa, Portugal.
  • Maria Enea
    LAQV/REQUIMTE-Laboratório Associado para a Química Verde/Rede de Química e Tecnologia, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
  • Daniela Nunes
    Associate Laboratory i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, and CEMOP/UNINOVA, 2829-516 Caparica, Portugal.
  • Elvira Fortunato
    CENIMAT|i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal. emf@fct.unl.pt.
  • Rodrigo Martins
    FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, 6200-001, Covilhã, Portugal.
  • Hugo Águas
    CENIMAT|i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal. hma@fct.unl.pt.
  • Eulália Pereira
    LAQV/REQUIMTE-Laboratório Associado para a Química Verde/Rede de Química e Tecnologia, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
  • Helena L A Vieira
    Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal.
  • Lúcio Studer Ferreira
    COPELABS-Departamento de Engenharia Informática e Sistemas de Informação, Universidade Lusófona, Centro Universitário de Lisboa, 1749-024 Lisboa, Portugal.
  • Ricardo Franco
    Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal.