Machine learning: An effective tool for monitoring and ensuring food safety, quality, and nutrition.
Journal:
Food chemistry
PMID:
40010186
Abstract
The domains of food safety, quality, and nutrition are inundated with complex datasets. Machine learning (ML) has emerged as a powerful tool in food science, offering fast, accessible, and effective solutions compared with conventional methods. This review outlines the applications of ML in safeguarding food safety, enhancing quality, and unraveling nutrition intricacies. The review encompasses the prediction of food contaminants, classification of food grades, detection of adulterants, and analysis of food nutrients and their correlations with nutritional diseases. Additionally, ML methods are highlighted to elucidate the relationships between gut microbiota, dietary patterns, and disease pathology, thereby positioning gut microbiota as potential biomarkers for disease intervention through dietary regulation. This study provides a valuable reference for future research on applications of ML to the field of food science.