Machine learning-based prediction model for patients with recurrent Staphylococcus aureus bacteremia.
Journal:
BMC medical informatics and decision making
PMID:
39994766
Abstract
BACKGROUND: Staphylococcus aureus bacteremia (SAB) remains a significant contributor to both community-acquired and healthcare-associated bloodstream infections. SAB exhibits a high recurrence rate and mortality rate, leading to numerous clinical treatment challenges. Particularly, since the outbreak of COVID-19, there has been a gradual increase in SAB patients, with a growing proportion of (Methicillin-resistant Staphylococcus aureus) MRSA infections. Therefore, we have constructed and validated a pediction model for recurrent SAB using machine learning. This model aids physicians in promptly assessing the condition and intervening proactively.