Multimodal deep learning fusion of ultrafast-DCE MRI and clinical information for breast lesion classification.
Journal:
Computers in biology and medicine
PMID:
39978091
Abstract
BACKGROUND: Breast cancer is the most common cancer worldwide, and magnetic resonance imaging (MRI) constitutes a very sensitive technique for invasive cancer detection. When reviewing breast MRI examination, clinical radiologists rely on multimodal information, composed of imaging data but also information not present in the images such as clinical information. Most machine learning (ML) approaches are not well suited for multimodal data. However, attention-based architectures, such as Transformers, are flexible and therefore good candidates for integrating multimodal data.