Comparative analysis of intestinal tumor segmentation in PET CT scans using organ based and whole body deep learning.
Journal:
BMC medical imaging
PMID:
39962481
Abstract
BACKGROUND: 18-Fluoro-deoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) is a valuable imaging tool widely used in the management of cancer patients. Deep learning models excel at segmenting highly metabolic tumors but face challenges in regions with complex anatomy and normal cell uptake, such as the gastro-intestinal tract. Despite these challenges, it remains important to achieve accurate segmentation of gastro-intestinal tumors.