BACKGROUND AND OBJECTIVES: Distinguishing neurodegenerative diseases is a challenging task requiring neurologic expertise. Clinical decision support systems (CDSSs) powered by machine learning (ML) and artificial intelligence can assist with complex ...
OBJECTIVE: To create an automated PET/CT segmentation method and radiomics model to forecast Mismatch repair (MMR) and TP53 gene expression in endometrial cancer patients, and to examine the effect of gene expression variability on image texture feat...
The recent approval of anti-amyloid pharmaceuticals for the treatment of Alzheimer's disease (AD) has created a pressing need for the ability to accurately identify optimal candidates for anti-amyloid therapy, specifically those with evidence for inc...
Journal of nuclear medicine : official publication, Society of Nuclear Medicine
May 1, 2025
This study investigated the added value of using maximum-intensity projection (MIP) images for fully automatic segmentation of lesions using deep learning (DL) in [F]FDG and [Ga]Ga-prostate-specific membrane antigen (PSMA) PET/CT scans. We used 489 ...
BACKGROUND: To develop and validate deep learning (DL) and traditional clinical-metabolic (CM) models based on 18 F-FDG PET/CT images for noninvasively predicting high-grade patterns (HGPs) of invasive lung adenocarcinoma (LUAD).
AIM: To develop a positron emission tomography/computed tomography (PET/CT)-based radiomics model for predicting programmed cell death ligand 1 (PD-L1) expression in non-small cell lung cancer (NSCLC) patients and estimating progression-free survival...
OBJECTIVE: This study aimed to develop and validate a nomogram combining F-FDG PET radiomics and clinical factors to non-invasively predict bone marrow involvement (BMI) in patients with lymphoma.
The advent of sophisticated image analysis techniques has facilitated the extraction of increasingly complex data, such as radiomic features, from various imaging modalities, including [F]FDG PET/CT, a well-established cornerstone of oncological imag...
Journal of cancer research and clinical oncology
Mar 28, 2025
PURPOSE: To explore the development and validation of automated machine learning (AutoML) models for F-FDG PET imaging-based radiomics signatures to predict treatment response in elderly patients with diffuse large B-cell lymphoma (DLBCL).
BACKGROUND: This study develops a deep learning-based automated lesion segmentation model for whole-body 3DF-fluorodeoxyglucose (FDG)-Position emission tomography (PET) with computed tomography (CT) images agnostic to disease location and site.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.