Medical oncology (Northwood, London, England)
Aug 11, 2025
Enhancing the accuracy of tumor response predictions enables the development of tailored therapeutic strategies for patients with breast cancer. In this study, we developed deep radiomic models to enhance the prediction of chemotherapy response after...
BMC medical informatics and decision making
Jul 15, 2025
PURPOSE: Accurate identification of bone marrow invasion (BMI) is critical for determining the prognosis of and treatment strategies for lymphoma. Although bone marrow biopsy (BMB) is the current gold standard, its invasive nature and sampling errors...
BACKGROUND: Widely used in oncology PET, 2-deoxy-2- 18 F-FDG PET is more accessible and affordable than amyloid PET, which is a crucial tool to determine amyloid positivity in diagnosis of Alzheimer disease (AD). This study aimed to leverage deep lea...
OBJECTIVE: To create an automated PET/CT segmentation method and radiomics model to forecast Mismatch repair (MMR) and TP53 gene expression in endometrial cancer patients, and to examine the effect of gene expression variability on image texture feat...
The recent approval of anti-amyloid pharmaceuticals for the treatment of Alzheimer's disease (AD) has created a pressing need for the ability to accurately identify optimal candidates for anti-amyloid therapy, specifically those with evidence for inc...
OBJECTIVE: PET image analysis provides tumor heterogeneity data related to neoadjuvant chemotherapy response (NACR) and metastatic risk in osteosarcoma. Ki-67 expression is used to predict metastasis. The accuracy of prediction models with image quan...
Journal of nuclear medicine : official publication, Society of Nuclear Medicine
May 1, 2025
This study investigated the added value of using maximum-intensity projection (MIP) images for fully automatic segmentation of lesions using deep learning (DL) in [F]FDG and [Ga]Ga-prostate-specific membrane antigen (PSMA) PET/CT scans. We used 489 ...
BACKGROUND: To develop and validate deep learning (DL) and traditional clinical-metabolic (CM) models based on 18 F-FDG PET/CT images for noninvasively predicting high-grade patterns (HGPs) of invasive lung adenocarcinoma (LUAD).
AIM: To develop a positron emission tomography/computed tomography (PET/CT)-based radiomics model for predicting programmed cell death ligand 1 (PD-L1) expression in non-small cell lung cancer (NSCLC) patients and estimating progression-free survival...
OBJECTIVE: This study aimed to develop and validate a nomogram combining F-FDG PET radiomics and clinical factors to non-invasively predict bone marrow involvement (BMI) in patients with lymphoma.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.