AIMC Topic: Fluorodeoxyglucose F18

Clear Filters Showing 1 to 10 of 226 articles

18F-FDG PET/CT-based deep radiomic models for enhancing chemotherapy response prediction in breast cancer.

Medical oncology (Northwood, London, England)
Enhancing the accuracy of tumor response predictions enables the development of tailored therapeutic strategies for patients with breast cancer. In this study, we developed deep radiomic models to enhance the prediction of chemotherapy response after...

An interpretable machine learning model for predicting bone marrow invasion in patients with lymphoma via F-FDG PET/CT: a multicenter study.

BMC medical informatics and decision making
PURPOSE: Accurate identification of bone marrow invasion (BMI) is critical for determining the prognosis of and treatment strategies for lymphoma. Although bone marrow biopsy (BMB) is the current gold standard, its invasive nature and sampling errors...

A Robust Residual Three-dimensional Convolutional Neural Networks Model for Prediction of Amyloid-β Positivity by Using FDG-PET.

Clinical nuclear medicine
BACKGROUND: Widely used in oncology PET, 2-deoxy-2- 18 F-FDG PET is more accessible and affordable than amyloid PET, which is a crucial tool to determine amyloid positivity in diagnosis of Alzheimer disease (AD). This study aimed to leverage deep lea...

A radiogenomics study on F-FDG PET/CT in endometrial cancer by a novel deep learning segmentation algorithm.

BMC cancer
OBJECTIVE: To create an automated PET/CT segmentation method and radiomics model to forecast Mismatch repair (MMR) and TP53 gene expression in endometrial cancer patients, and to examine the effect of gene expression variability on image texture feat...

Brain metabolic imaging-based model identifies cognitive stability in prodromal Alzheimer's disease.

Scientific reports
The recent approval of anti-amyloid pharmaceuticals for the treatment of Alzheimer's disease (AD) has created a pressing need for the ability to accurately identify optimal candidates for anti-amyloid therapy, specifically those with evidence for inc...

PET image nonuniformity texture features for metastasis risk prediction in osteosarcoma.

Nuclear medicine communications
OBJECTIVE: PET image analysis provides tumor heterogeneity data related to neoadjuvant chemotherapy response (NACR) and metastatic risk in osteosarcoma. Ki-67 expression is used to predict metastasis. The accuracy of prediction models with image quan...

The Use of Maximum-Intensity Projections and Deep Learning Adds Value to the Fully Automatic Segmentation of Lesions Avid for [F]FDG and [Ga]Ga-PSMA in PET/CT.

Journal of nuclear medicine : official publication, Society of Nuclear Medicine
This study investigated the added value of using maximum-intensity projection (MIP) images for fully automatic segmentation of lesions using deep learning (DL) in [F]FDG and [Ga]Ga-prostate-specific membrane antigen (PSMA) PET/CT scans. We used 489 ...

F-FDG PET/CT-based deep learning models and a clinical-metabolic nomogram for predicting high-grade patterns in lung adenocarcinoma.

BMC medical imaging
BACKGROUND: To develop and validate deep learning (DL) and traditional clinical-metabolic (CM) models based on 18 F-FDG PET/CT images for noninvasively predicting high-grade patterns (HGPs) of invasive lung adenocarcinoma (LUAD).

Prediction of PD-L1 expression in NSCLC patients using PET/CT radiomics and prognostic modelling for immunotherapy in PD-L1-positive NSCLC patients.

Clinical radiology
AIM: To develop a positron emission tomography/computed tomography (PET/CT)-based radiomics model for predicting programmed cell death ligand 1 (PD-L1) expression in non-small cell lung cancer (NSCLC) patients and estimating progression-free survival...