AIMC Topic: Radiopharmaceuticals

Clear Filters Showing 1 to 10 of 191 articles

18F-FDG PET/CT-based deep radiomic models for enhancing chemotherapy response prediction in breast cancer.

Medical oncology (Northwood, London, England)
Enhancing the accuracy of tumor response predictions enables the development of tailored therapeutic strategies for patients with breast cancer. In this study, we developed deep radiomic models to enhance the prediction of chemotherapy response after...

An interpretable machine learning model for predicting bone marrow invasion in patients with lymphoma via F-FDG PET/CT: a multicenter study.

BMC medical informatics and decision making
PURPOSE: Accurate identification of bone marrow invasion (BMI) is critical for determining the prognosis of and treatment strategies for lymphoma. Although bone marrow biopsy (BMB) is the current gold standard, its invasive nature and sampling errors...

A radiogenomics study on F-FDG PET/CT in endometrial cancer by a novel deep learning segmentation algorithm.

BMC cancer
OBJECTIVE: To create an automated PET/CT segmentation method and radiomics model to forecast Mismatch repair (MMR) and TP53 gene expression in endometrial cancer patients, and to examine the effect of gene expression variability on image texture feat...

Synthesizing [F]PSMA-1007 PET bone images from CT images with GAN for early detection of prostate cancer bone metastases: a pilot validation study.

BMC cancer
BACKGROUND: [F]FDG PET/CT scan combined with [F]PSMA-1007 PET/CT scan is commonly conducted for detecting bone metastases in prostate cancer (PCa). However, it is expensive and may expose patients to more radiation hazards. This study explores deep l...

Characterization of Effective Half-Life for Instant Single-Time-Point Dosimetry Using Machine Learning.

Journal of nuclear medicine : official publication, Society of Nuclear Medicine
Single-time-point (STP) image-based dosimetry offers a more convenient approach for clinical practice in radiopharmaceutical therapy (RPT) compared with conventional multiple-time-point image-based dosimetry. Despite numerous advancements, current ST...

F-FDG PET/CT-based deep learning models and a clinical-metabolic nomogram for predicting high-grade patterns in lung adenocarcinoma.

BMC medical imaging
BACKGROUND: To develop and validate deep learning (DL) and traditional clinical-metabolic (CM) models based on 18 F-FDG PET/CT images for noninvasively predicting high-grade patterns (HGPs) of invasive lung adenocarcinoma (LUAD).

Prediction of PD-L1 expression in NSCLC patients using PET/CT radiomics and prognostic modelling for immunotherapy in PD-L1-positive NSCLC patients.

Clinical radiology
AIM: To develop a positron emission tomography/computed tomography (PET/CT)-based radiomics model for predicting programmed cell death ligand 1 (PD-L1) expression in non-small cell lung cancer (NSCLC) patients and estimating progression-free survival...

Machine learning models for enhanced diagnosis and risk assessment of prostate cancer with Ga-PSMA-617 PET/CT.

European journal of radiology
OBJECTIVE: Prostate cancer (PCa) is highly heterogeneous, making early detection of adverse pathological features crucial for improving patient outcomes. This study aims to predict PCa aggressiveness and identify radiomic and protein biomarkers assoc...

A PET/CT-based 3D deep learning model for predicting spread through air spaces in stage I lung adenocarcinoma.

Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico
PURPOSE: This study evaluates a three-dimensional (3D) deep learning (DL) model based on fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) for predicting the preoperative status of spread through air spa...