Novel pre-spatial data fusion deep learning approach for multimodal volumetric outcome prediction models in radiotherapy.
Journal:
Medical physics
PMID:
39928034
Abstract
BACKGROUND: Given the recent increased emphasis on multimodal neural networks to solve complex modeling tasks, the problem of outcome prediction for a course of treatment can be framed as fundamentally multimodal in nature. A patient's response to treatment will vary based on their specific anatomy and the proposed treatment plan-these factors are spatial and closely related. However, additional factors may also have importance, such as non-spatial descriptive clinical characteristics, which can be structured as tabular data. It is critical to provide models with as comprehensive of a patient representation as possible, but inputs with differing data structures are incompatible in raw form; traditional models that consider these inputs require feature engineering prior to modeling. In neural networks, feature engineering can be organically integrated into the model itself, under one governing optimization, rather than performed prescriptively beforehand. However, the native incompatibility of different data structures must be addressed. Methods to reconcile structural incompatibilities in multimodal model inputs are called data fusion. We present a novel joint early pre-spatial (JEPS) fusion technique and demonstrate that differences in fusion approach can produce significant model performance differences even when the data is identical.