Multi-task learning for automated contouring and dose prediction in radiotherapy.

Journal: Physics in medicine and biology
PMID:

Abstract

. Deep learning (DL)-based automated contouring and treatment planning has been proven to improve the efficiency and accuracy of radiotherapy. However, conventional radiotherapy treatment planning process has the automated contouring and treatment planning as separate tasks. Moreover in DL, the contouring and dose prediction tasks for automated treatment planning are done independently.. In this study, we applied the multi-task learning (MTL) approach in order to seamlessly integrate automated contouring and voxel-based dose prediction tasks, as MTL can leverage common information between the two tasks and be able to increase the efficiency of the automated tasks. We developed our MTL framework using the two datasets: in-house prostate cancer dataset and the publicly available head and neck cancer dataset, OpenKBP.. Compared to the sequential DL contouring and treatment planning tasks, our proposed method using MTL improved the mean absolute difference of dose volume histogram metrics of prostate and head and neck sites by 19.82% and 16.33%, respectively. Our MTL model for automated contouring and dose prediction tasks demonstrated enhanced dose prediction performance while maintaining or sometimes even improving the contouring accuracy. Compared to the baseline automated contouring model with the Dice score coefficients of 0.818 for prostate and 0.674 for head and neck datasets, our MTL approach achieved average scores of 0.824 and 0.716 for these datasets, respectively.. Our study highlights the potential of the proposed automated contouring and planning using MTL to support the development of efficient and accurate automated treatment planning for radiotherapy.

Authors

  • Sangwook Kim
    School of Electronics Engineering, Kyungpook National University, 1370 Sankyuk-Dong, Puk-Gu, Taegu 702-701, Republic of Korea.
  • Aly Khalifa
    Neuro-Information Technology Group, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany.
  • Thomas G Purdie
    Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 3E2, Canada; and Techna Institute, University Health Network, Toronto, Ontario M5G 1P5, Canada.
  • Chris McIntosh