Flip Learning: Weakly supervised erase to segment nodules in breast ultrasound.

Journal: Medical image analysis
PMID:

Abstract

Accurate segmentation of nodules in both 2D breast ultrasound (BUS) and 3D automated breast ultrasound (ABUS) is crucial for clinical diagnosis and treatment planning. Therefore, developing an automated system for nodule segmentation can enhance user independence and expedite clinical analysis. Unlike fully-supervised learning, weakly-supervised segmentation (WSS) can streamline the laborious and intricate annotation process. However, current WSS methods face challenges in achieving precise nodule segmentation, as many of them depend on inaccurate activation maps or inefficient pseudo-mask generation algorithms. In this study, we introduce a novel multi-agent reinforcement learning-based WSS framework called Flip Learning, which relies solely on 2D/3D boxes for accurate segmentation. Specifically, multiple agents are employed to erase the target from the box to facilitate classification tag flipping, with the erased region serving as the predicted segmentation mask. The key contributions of this research are as follows: (1) Adoption of a superpixel/supervoxel-based approach to encode the standardized environment, capturing boundary priors and expediting the learning process. (2) Introduction of three meticulously designed rewards, comprising a classification score reward and two intensity distribution rewards, to steer the agents' erasing process precisely, thereby avoiding both under- and over-segmentation. (3) Implementation of a progressive curriculum learning strategy to enable agents to interact with the environment in a progressively challenging manner, thereby enhancing learning efficiency. Extensively validated on the large in-house BUS and ABUS datasets, our Flip Learning method outperforms state-of-the-art WSS methods and foundation models, and achieves comparable performance as fully-supervised learning algorithms.

Authors

  • Yuhao Huang
    Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA. yhhuang@stanford.edu.
  • Ao Chang
    National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China; Medical UltraSound Image Computing (MUSIC) Lab, Shenzhen University, Shenzhen, China; Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China.
  • Haoran Dou
    National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
  • Xing Tao
    China (Guangxi)-ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, PR China.
  • Xinrui Zhou
    School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
  • Yan Cao
    School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
  • Ruobing Huang
    Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK. Electronic address: ruobing.huang@eng.ox.ac.uk.
  • Alejandro F Frangi
    Information and Communication Technologies Department, Universitat Pompeu Fabra, Barcelona, Spain; Department of Mechanical Engineering, The University of Sheffield, United Kingdom.
  • Lingyun Bao
    Department of Ultrasound, Hangzhou First Peoples Hospital, Zhejiang University, Hangzhou, China.
  • Xin Yang
    Department of Oral Maxillofacial-Head Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
  • Dong Ni