IdenBAT: Disentangled representation learning for identity-preserved brain age transformation.

Journal: Artificial intelligence in medicine
PMID:

Abstract

Brain age transformation aims to convert reference brain images into synthesized images that accurately reflect the age-specific features of a target age group. The primary objective of this task is to modify only the age-related attributes of the reference image while preserving all other age-irrelevant attributes. However, achieving this goal poses substantial challenges due to the inherent entanglement of various image attributes within features extracted from a backbone encoder, resulting in simultaneous alterations during image generation. To address this challenge, we propose a novel architecture that employs disentangled representation learning for identity-preserved brain age transformation, called IdenBAT. This approach facilitates the decomposition of image features, ensuring the preservation of individual traits while selectively transforming age-related characteristics to match those of the target age group. Through comprehensive experiments conducted on both 2D and full-size 3D brain datasets, our method adeptly converts input images to target age while retaining individual characteristics accurately. Furthermore, our approach demonstrates superiority over existing state-of-the-art regarding performance fidelity. The code is available at: https://github.com/ku-milab/IdenBAT.

Authors

  • Junyeong Maeng
    Department of Artificial Intelligence, Korea University, Seoul, Korea.
  • Kwanseok Oh
    Department of Artificial Intelligence, Korea University, Seoul 02841, Republic of Korea.
  • Wonsik Jung
    Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea.
  • Heung-Il Suk
    Biomedical Research Imaging Center (BRIC) and Department of Radiology, University of North Carolina, Chapel Hill, NC, 27599, USA, hsuk@med.unc.edu.