Dynamics and Machine Learning Reveal the Link between Tripeptide Sequences and Evaporation-Driven Material Properties.
Journal:
Nano letters
PMID:
40289375
Abstract
Previous research showed that a peptide composed of three tyrosines (YYY) can turn into organic glass and cause strong adhesion between substrates via evaporation. However, the mechanisms of these processes remain unclear, and the exploration of applications of other peptide sequences is necessary. In this study, an optimized evaporation method was employed in molecular dynamics. It was found that YYY evaporation products possess abundant internal hydrogen bonds, which may facilitate the amorphous glass state formation. Moderate hydrophilicity of a peptide enhances molecular mobility and self-healing ability, while excessive hydrophilicity causes a water plasticizing effect. Stronger hydrophilicity also brings a larger curvature of evaporation products on polydimethylsiloxane (PDMS) substrate. A machine learning model was developed to predict the evaporation contact angle of peptide evaporation products and agrees well with the experiment. This research aims to improve understanding of peptide structure-function relationships and aid in designing custom organic optical devices based on peptide sequences.