Artificial neural networks applied to somatosensory evoked potentials for migraine classification.
Journal:
The journal of headache and pain
PMID:
40186113
Abstract
BACKGROUND: Finding a biomarker to diagnose migraine remains a significant challenge in the headache field. Migraine patients exhibit dynamic and recurrent alterations in the brainstem-thalamo-cortical loop, including reduced thalamocortical activity and abnormal habituation during the interictal phase. Although these insights into migraine pathophysiology have been valuable, they are not currently used in clinical practice. This study aims to evaluate the potential of Artificial Neural Networks (ANNs) in distinguishing migraine patients from healthy individuals using neurophysiological recordings.