SFM-Net: Semantic Feature-Based Multi-Stage Network for Unsupervised Image Registration.
Journal:
IEEE journal of biomedical and health informatics
PMID:
40030793
Abstract
It is difficult for general registration methods to establish the fine correspondence between images with complex anatomical structures. To overcome the above problem, this work presents SFM-Net, an unsupervised multi-stage semantic feature-based network. In addition to using the pixel-based similarity metrics, we propose a feature operator and emphasize a feature registration to improve the alignment of semantic related areas. Specifically, we design a two-stage training strategy, the intensity image registration stage and the semantic feature registration stage. The former is for valid semantic features learning and intensity-based coarse registration, while the latter is for semantic areas alignment, achieving fine transformation of anatomical structure. The same structure of both stages is composed of a dual-stream feature extraction module (DFEM) and a refined deformation field generation module (RDGM). Unlike the deep learning-based approaches that utilizing down-sampled encoder to extract features, DFEM constructed by dual-stream U-Net structure can capture semantic information in decoder feature for structural alignment. Different with approaches applying cascaded networks to learn deformation field, our proposed RDGM generates multi-scale deformation fields by performing a coarse-to-fine registration within a single network. Experiments on 3D brain MRI and liver CT datasets confirm that the proposed SFM-Net achieves accurate and diffeomorphic registration results, outperforming other state-of-the-art methods.