Evaluating robustly standardized explainable anomaly detection of implausible variables in cancer data.

Journal: Journal of the American Medical Informatics Association : JAMIA
PMID:

Abstract

OBJECTIVES: Explanations help to understand why anomaly detection algorithms identify data as anomalous. This study evaluates whether robustly standardized explanation scores correctly identify the implausible variables that make cancer data anomalous.

Authors

  • Philipp Röchner
    Information Systems and Business Administration, Johannes Gutenberg University, Mainz 55128, Germany.
  • Franz Rothlauf
    Johannes Gutenberg University, Mainz, Germany.