An Efficient Graph Learning System for Emotion Recognition Inspired by the Cognitive Prior Graph of EEG Brain Network.

Journal: IEEE transactions on neural networks and learning systems
Published Date:

Abstract

Benefiting from the high-temporal resolution of electroencephalogram (EEG), EEG-based emotion recognition has become one of the hotspots of affective computing. For EEG-based emotion recognition systems, it is crucial to utilize state-of-the-art learning strategies to automatically learn emotion-related brain cognitive patterns from emotional EEG signals, and the learned stable cognitive patterns effectively ensure the robustness of the emotion recognition system. In this work, to realize the efficient decoding of emotional EEG, we propose a graph learning system [Graph Convolutional Network framework with Brain network initial inspiration and Fused attention mechanism (BF-GCN)] inspired by the brain cognitive mechanism to automatically learn graph patterns from emotional EEG and improve the performance of EEG emotion recognition. In the proposed BF-GCN, three graph branches, i.e., cognition-inspired functional graph branch, data-driven graph branch, and fused common graph branch, are first elaborately designed to automatically learn emotional cognitive graph patterns from emotional EEG signals. And then, the attention mechanism is adopted to further capture the brain activation graph patterns that are related to emotion cognition to achieve an efficient representation of emotional EEG signals. Essentially, the proposed BF-CGN model is a cognition-inspired graph learning neural network model, which utilizes the spectral graph filtering theory in the automatic learning and extracting of emotional EEG graph patterns. To evaluate the performance of the BF-GCN graph learning system, we conducted subject-dependent and subject-independent experiments on two public datasets, i.e., SEED and SEED-IV. The proposed BF-GCN graph learning system has achieved 97.44% (SEED) and 89.55% (SEED-IV) in subject-dependent experiments, and the results in subject-independent experiments have achieved 92.72% (SEED) and 82.03% (SEED-IV), respectively. The state-of-the-art performance indicates that the proposed BF-GCN graph learning system has a robust performance in EEG-based emotion recognition, which provides a promising direction for affective computing.

Authors

  • Cunbo Li
    The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
  • Tian Tang
    Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
  • Yue Pan
    Department of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of TCM, Tianjin 300193, China.
  • Lei Yang
    George Mason University.
  • Shuhan Zhang
    Department of Clinical Medicine, Suzhou Medical College, Soochow University, Suzhou, China.
  • Zhaojin Chen
  • Peiyang Li
    Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
  • Dongrui Gao
    School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China.
  • Huafu Chen
    Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 610054, PR China. Electronic address: chenhf@uestc.edu.cn.
  • Fali Li
    The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
  • DeZhong Yao
    The Key Laboratory for Neuro Information of Ministry of Education, Center for Information in Bio Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
  • Zehong Cao
  • Peng Xu
    Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.