Deep normative modelling reveals insights into early-stage Alzheimer's disease using multi-modal neuroimaging data.
Journal:
Alzheimer's research & therapy
PMID:
40375339
Abstract
BACKGROUND: Exploring the early stages of Alzheimer's disease (AD) is crucial for timely intervention to help manage symptoms and set expectations for affected individuals and their families. However, the study of the early stages of AD involves analysing heterogeneous disease cohorts which may present challenges for some modelling techniques. This heterogeneity stems from the diverse nature of AD itself, as well as the inclusion of undiagnosed or 'at-risk' AD individuals or the presence of comorbidities which differentially affect AD biomarkers within the cohort. Normative modelling is an emerging technique for studying heterogeneous disorders that can quantify how brain imaging-based measures of individuals deviate from a healthy population. The normative model provides a statistical description of the 'normal' range that can be used at subject level to detect deviations, which may relate to pathological effects.