A self-supervised multimodal deep learning approach to differentiate post-radiotherapy progression from pseudoprogression in glioblastoma.

Journal: Scientific reports
PMID:

Abstract

Accurate differentiation of pseudoprogression (PsP) from True Progression (TP) following radiotherapy (RT) in glioblastoma patients is crucial for optimal treatment planning. However, this task remains challenging due to the overlapping imaging characteristics of PsP and TP. This study therefore proposes a multimodal deep-learning approach utilizing complementary information from routine anatomical MR images, clinical parameters, and RT treatment planning information for improved predictive accuracy. The approach utilizes a self-supervised Vision Transformer (ViT) to encode multi-sequence MR brain volumes to effectively capture both global and local context from the high dimensional input. The encoder is trained in a self-supervised upstream task on unlabeled glioma MRI datasets from the open BraTS2021, UPenn-GBM, and UCSF-PDGM datasets (n = 2317 MRI studies) to generate compact, clinically relevant representations from FLAIR and T1 post-contrast sequences. These encoded MR inputs are then integrated with clinical data and RT treatment planning information through guided cross-modal attention, improving progression classification accuracy. This work was developed using two datasets from different centers: the Burdenko Glioblastoma Progression Dataset (n = 59) for training and validation, and the GlioCMV progression dataset from the University Hospital Erlangen (UKER) (n = 20) for testing. The proposed method achieved competitive performance, with an AUC of 75.3%, outperforming the current state-of-the-art data-driven approaches. Importantly, the proposed approach relies solely on readily available anatomical MRI sequences, clinical data, and RT treatment planning information, enhancing its clinical feasibility. The proposed approach addresses the challenge of limited data availability for PsP and TP differentiation and could allow for improved clinical decision-making and optimized treatment plans for glioblastoma patients.

Authors

  • Ahmed Gomaa
    Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
  • Yixing Huang
    Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 3, 91058, Erlangen, Germany. yixing.yh.huang@fau.de.
  • Pluvio Stephan
    Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany.
  • Katharina Breininger
  • Benjamin Frey
    Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
  • Arnd Dörfler
    Department of Neuroradiology, Universitätsklinikum Erlangen, FAU, Erlangen, Germany.
  • Oliver Schnell
    Division of Pediatric Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
  • Daniel Delev
    Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital, Aachen, Germany.
  • Roland Coras
    Institute of Neuropathology, University Hospitals, Erlangen, Germany.
  • Anna-Jasmina Donaubauer
    Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany.
  • Charlotte Schmitter
    Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany.
  • Jenny Stritzelberger
    Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany.
  • Sabine Semrau
    Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitaetsstraße 27, 91054, Erlangen, Germany.
  • Andreas Maier
    Pattern Recognition Lab, University Erlangen-Nürnberg, Erlangen, Germany.
  • Siming Bayer
    Siemens Healthineers, Karl Heinz Kaske Str. 5, 91052, Erlangen, Bayern, Germany.
  • Stephan Schönecker
    Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
  • Dieter H Heiland
    Translational Neurosurgery, Alexander-Friedrich-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany.
  • Peter Hau
    Department of Neurology, University Hospital Regensburg, Regensburg, Germany.
  • Udo S Gaipl
    Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitaetsstraße 27, 91054, Erlangen, Germany.
  • Christoph Bert
    Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Rainer Fietkau
    Department of Radiation Oncology, Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
  • Manuel A Schmidt
    Department of Neuroradiology, Universitätsklinikum Erlangen, FAU, Erlangen, Germany.
  • Florian Putz
    Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.