Enhancing Antibiotic Stewardship: A Machine Learning Approach to Predicting Antibiotic Resistance in Inpatient Care.
Journal:
AMIA ... Annual Symposium proceedings. AMIA Symposium
Published Date:
May 22, 2025
Abstract
Antibiotics have been crucial in advancing medical treatments, but the growing threat of antibiotic resistance challenges these achievements and emphasizes the need for innovative stewardship strategies. In this study, we developed machine learning models, 'personalized antibiograms', to predict antibiotic resistance across five key antibiotics using Stanford's electronic health record data of 49,872 urine, blood, and respiratory infections. We aimed to ascertain the efficacy of these models in predicting antibiotic susceptibility and identify the clinical factors most indicative of resistance. Employing LightGBM, we incorporated demographics, prior resistance, prescriptions, and comorbidities as features. The models demonstrated notable discriminative ability, with AUROCs between 0.74 and 0.78, and highlighted prior resistance and prescriptions as significant predictive factors. The high specificity demonstrates machine learning models' potential to inform antibiotic de-escalation, aiding stewardship without risking safety. By leveraging machine learning with relevant clinical features, we show that it is feasible to improve empirical antibiotic prescribing.