Exploratory multi-cohort, multi-reader study on the clinical utility of a deep learning model for transforming cryosectioned to formalin-fixed, paraffin-embedded (FFPE) images in breast lesion diagnosis.
Journal:
Breast cancer research : BCR
Published Date:
Jun 17, 2025
Abstract
BACKGROUND: Cryosectioned tissues often exhibit artifacts that compromise pathologists' diagnostic accuracy during intraoperative assessments. These inconsistencies, compounded by variations in frozen section (FS) production across laboratories, highlight the need for improved diagnostic tools. This study aims to develop and validate a deep-learning model that transforms cryosectioned images into formalin-fixed paraffin-embedded (FFPE) images to enhance diagnostic performance in breast lesions.