The immuneoreaction and antioxidant status of Chinese mitten crab (Eriocheir sinensis) involve protein metabolism and the response of mTOR signaling pathway to dietary methionine levels.

Journal: Fish & shellfish immunology
PMID:

Abstract

To study the effects of dietary methionine on growth performance, immunity, antioxidant capacity, protein metabolism, inflammatory response and apoptosis factors in Chinese mitten crabs (Eriocheir sinensis). Five diets with different methionine levels (0.63%, 0.85%, 1.06%, 1.25% and 1.47%) were fed to E. sinensis for 8 weeks. Results showed that in the 1.25% Met group, both growth performance and feed utilization were significantly increased. The crude protein content of crab muscle in the 1.06% and 1.25% Met groups was significantly higher than that in the control group. The immune and antioxidant enzyme activities, as well as gene expression levels of anti-lipopolysaccharide factor 1 (ALF1), Crustin-1, prophenoloxidase (proPO), cap 'n' collar isoform C (CncC) in 1.25% Met group were significantly higher than other groups. The activities of adenosine deaminase (ADA) and glutamate transaminase (GPT) in serum decreased first and then increased with the increase of methionine content, while the changes of ADA and GPT in hepatopancreas increased first and then decreased. 1.25% Met group exhibited significantly increased levels of GOT, GPT, and ADA compared to the control group. 1.25% Met diet group significantly up-regulated protein synthesis and anti-apoptotic factors, and significantly down-regulated inflammatory and pro-apoptotic factors in hepatopancreas. At 1.25% in the diet, methionine was found to boost E. sinensis growth, muscle protein deposition and immunity, as well as its antioxidant capacity. Combined with the above results, based on the expression of factors involved in the mammalian target of rapamycin (mTOR) signaling pathway and the mitogen-activated protein kinase (MAPK) signaling pathway, it is proved that methionine can not only promote protein metabolism, improve feed utilization, but also alleviate the inflammatory response and apoptosis caused by oxidative stress in the body.

Authors

  • Xin Wang
    Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
  • Xin-Yu Lei
    Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
  • Zhi-Xin Guo
    Tonghua Normal University, College of Life Science, Jilin, Tonghua, 134001, China.
  • Sen Wang
    Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
  • Ji-Wu Wan
    Aquatic Product Technology Extension Station of Jilin Province, Changchun, 130012, China.
  • Hong-Jian Liu
    Aquatic Product Technology Extension Station of Jilin Province, Changchun, 130012, China.
  • Yu-Ke Chen
    Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
  • Gui-Qin Wang
    Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
  • Qiu-Ju Wang
    Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China. Electronic address: wangqiuju0439@163.com.
  • Dong-Ming Zhang
    Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China. Electronic address: domgmingzhang0431@aliyun.com.