Machine learning methods, applications and economic analysis to predict heart failure hospitalisation risk: a scoping review.
Journal:
BMJ open
Published Date:
Jun 25, 2025
Abstract
BACKGROUND: Machine Learning (ML) has been transformative in healthcare, enabling more precise diagnostics, personalised treatment regimens and enhanced patient care. In cardiology, ML plays a crucial role in risk prediction and patient stratification, particularly for heart failure (HF), a condition affecting over 64 million people globally and imposing an economic burden of approximately $108 billion annually. ML applications in HF include predictive analytics for risk assessment, identifying patient subgroups with varying prognoses and optimising treatment pathways. By accurately predicting the likelihood of hospitalisation and rehospitalisation, ML tools help tailor interventions, reduce hospital visits, improve patient outcomes and lower healthcare costs.