Classifying and diagnosing Alzheimer's disease with deep learning using 6735 brain MRI images.
Journal:
Scientific reports
Published Date:
Jul 2, 2025
Abstract
Traditional diagnostic methods for Alzheimer's disease often suffer from low accuracy and lengthy processing times, delaying crucial interventions and patient care. Deep convolutional neural networks trained on MRI data can enhance diagnostic precision. This study aims to utilize deep convolutional neural networks (CNNs) trained on MRI data for Alzheimer's disease diagnosis and classification. In this study, the Alzheimer MRI Preprocessed Dataset was used, which includes 6735 brain structural MRI scan images. After data preprocessing and normalization, four models Xception, VGG19, VGG16 and InceptionResNetV2 were utilized. Generalization and hyperparameter tuning were applied to improve training. Early stopping and dynamic learning rate were used to prevent overfitting. Model performance was evaluated based on accuracy, F-score, recall, and precision. The InceptionResnetV2 model showed superior performance in predicting Alzheimer's patients with an accuracy, F-score, recall, and precision of 0.99. Then, the Xception model excelled in precision, recall, and F-score, with values of 0.97 and an accuracy of 96.89. Notably, InceptionResnetV2 and VGG19 demonstrated faster learning, reaching convergence sooner and requiring fewer training iterations than other models. The InceptionResNetV2 model achieved the highest performance, with precision, recall, and F-score of 100% for both mild and moderate dementia classes. The Xception model also performed well, attaining 100% for the moderate dementia class and 99-100% for the mild dementia class. Additionally, the VGG16 and VGG19 models showed strong results, with VGG16 reaching 100% precision, recall, and F-score for the moderate dementia class. Deep convolutional neural networks enhance Alzheimer's diagnosis, surpassing traditional methods with improved precision and efficiency. Models like InceptionResnetV2 show outstanding performance, potentially speeding up patient interventions.