Deep learning based classification of tibio-femoral knee osteoarthritis from lateral view knee joint X-ray images.

Journal: Scientific reports
Published Date:

Abstract

Design an effective deep learning-driven method to locate and classify the tibio-femoral knee joint space width (JSW) with respect to both anterior-posterior (AP) and lateral views. Compare the results and see how successfully a deep learning approach can locate and classify tibio-femoral knee joint osteoarthritis from both anterior-posterior (AP) and lateral-view knee joint x-ray images. To evaluate the performance of a deep learning approach to classify and compare radiographic tibio-femoral knee joint osteoarthritis from both AP and lateral view knee joint digital X-ray images. We use 4334 data points (knee X-ray images) for this study. This paper introduces a methodology to locate, classify, and compare the outcomes of tibio-femoral knee joint osteoarthritis from both AP and lateral knee joint x-ray images. We have fine-tuned DenseNet 201 with transfer learning to extract the features to detect and classify tibio-femoral knee joint osteoarthritis from both AP view and lateral view knee joint X-ray images. The proposed model is compared with some classifiers. The proposed model locate the tibio femoral knee JSW localization accuracy at 98.12% (lateral view) and 99.32% (AP view). The classification accuracy with respect to the lateral view is 92.42% and the AP view is 98.57%, which indicates the performance of automatic detection and classification of tibio-femoral knee joint osteoarthritis with respect to both views (AP and lateral views).We represent the first automated deep learning approach to classify tibio-femoral osteoarthritis on both the AP view and the lateral view, respectively. The proposed deep learning approach trained on the femur and tibial bone regions from both AP view and lateral view digital X-ray images. The proposed model performs better at locating and classifying tibio femoral knee joint osteoarthritis than the existing approaches. The proposed approach will be helpful for the clinicians/medical experts to analyze the progression of tibio-femoral knee OA in different views. The proposed approach performs better in AP view than Lateral view. So, when compared to other continuing existing architectures/models, the proposed model offers exceptional outcomes with fine-tuning.

Authors

  • S Sheik Abdullah
    Department of Electronics and Communication, Kalasalingam Academy of Research and Education, Srivilliputhur, India.
  • M Pallikonda Rajasekaran
    Department of Electronics and Communication Engineering, Kalasalingam Academy of Research and Education, Virudhunagar, India.
  • Mohamed Jakir Hossen
    Faculty of Engineering and Technology, Multimedia University, Melaka, Malaysia.
  • Wai Kit Wong
    Faculty of Engineering and Technology, Multimedia University, Melaka, Malaysia.
  • Poh Kiat Ng
    Faculty of Engineering and Technology, Multimedia University, Melaka, Malaysia.