Enhancing automated detection and classification of dementia in individuals with cognitive impairment using artificial intelligence techniques.
Journal:
Scientific reports
Published Date:
Jul 9, 2025
Abstract
Dementia is a degenerative and chronic disorder, increasingly prevalent among older adults, posing significant challenges in providing appropriate care. As the number of dementia cases continues to rise, delivering optimal care becomes more complex. Machine learning (ML) plays a crucial role in addressing this challenge by utilizing medical data to enhance care planning and management for individuals at risk of various types of dementia. Magnetic resonance imaging (MRI) is a commonly used method for analyzing neurological disorders. Recent evidence highlights the benefits of integrating artificial intelligence (AI) techniques with MRI, significantly enhancing the diagnostic accuracy for different forms of dementia. This paper explores the use of AI in the automated detection and classification of dementia, aiming to streamline early diagnosis and improve patient outcomes. Integrating ML models into clinical practice can transform dementia care by enabling early detection, personalized treatment plans, and more effectual monitoring of disease progression. In this study, an Enhancing Automated Detection and Classification of Dementia in Thinking Inability Persons using Artificial Intelligence Techniques (EADCD-TIPAIT) technique is presented. The goal of the EADCD-TIPAIT technique is for the detection and classification of dementia in individuals with cognitive impairment using MRI imaging. The EADCD-TIPAIT method performs preprocessing to scale the input data using z-score normalization to obtain this. Next, the EADCD-TIPAIT technique performs a binary greylag goose optimization (BGGO)-based feature selection approach to efficiently identify relevant features that distinguish between normal and dementia-affected brain regions. In addition, the wavelet neural network (WNN) classifier is employed to detect and classify dementia. Finally, the improved salp swarm algorithm (ISSA) is implemented to choose the WNN technique's hyperparameters optimally. The stimulation of the EADCD-TIPAIT technique is examined under a Dementia prediction dataset. The performance validation of the EADCD-TIPAIT approach portrayed a superior accuracy value of 95.00% under diverse measures.