Adaptive-learning physics-assisted light-field microscopy enables day-long and millisecond-scale super-resolution imaging of 3D subcellular dynamics.
Journal:
Nature communications
Published Date:
Aug 4, 2025
Abstract
Long-term and high-spatiotemporal-resolution 3D imaging of living cells remains an unmet challenge for super-resolution microscopy, owing to the noticeable phototoxicity and limited scanning speed. While emerging light-field microscopy can mitigate this issue through three-dimensionally capturing biological dynamics with merely single snapshot, it suffers from suboptimal resolution insufficient for resolving subcellular structures. Here we propose an Adaptive Learning PHysics-Assisted Light-Field Microscopy (Alpha-LFM) with a physics-assisted deep learning framework and adaptive-tuning strategies capable of light-field reconstruction of diverse subcellular dynamics. Alpha-LFM delivers sub-diffraction-limit spatial resolution (up to ~120 nm) while maintaining high temporal resolution and low phototoxicity. It enables rapid and mild 3D super-resolution imaging of diverse intracellular dynamics at hundreds of volumes per second with exceptional details. Using Alpha-LFM approach, we finely resolve the lysosome-mitochondrial interactions, capture rapid motion of peroxisome and the endoplasmic reticulum at 100 volumes per second, and reveal the variations in mitochondrial fission activity throughout two complete cell cycles of 60 h.