A computational framework for inferring species dynamics and interactions with applications in microbiota ecology.

Journal: NPJ systems biology and applications
Published Date:

Abstract

We present MBPert, a generic computational framework for inferring species interactions and predicting dynamics in time-evolving ecosystems from perturbation and time-series data. In this work, we contextualize the framework in microbial ecosystem modeling by coupling a modified generalized Lotka-Volterra formulation with machine learning optimization. Unlike traditional methods that rely on gradient matching, MBPert leverages numerical solutions of differential equations and iterative parameter estimation to robustly capture microbial dynamics. The framework is assessed within the context of two experimental scenarios: (i) paired before-and-after measurements under targeted perturbations, and (ii) longitudinal time-series data with time-dependent perturbations. Extensive simulation studies, benchmarking on standardized MTIST datasets, and application to Clostridium difficile infection in mice and repeated antibiotic perturbations of human gut micribiota, demonstrate that MBPert accurately recapitulates species interactions and predicts system dynamics. Our results highlight MBPert as a powerful and flexible tool for mechanistic insight into microbiota ecology, with broad potential applicability to other complex dynamical systems.

Authors

  • Yuanwei Xu
    College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham, B15 2TT, UK.
  • Georgios V Gkoutos
    Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom; Institute of Translational Medicine, University of Birmingham, Birmingham, United Kingdom; NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, United Kingdom; MRC Health Data Research UK (HDR UK), London, United Kingdom; NIHR Experimental Cancer Medicine Centre, Birmingham, United Kingdom; NIHR Biomedical Research Centre, University Hospital Birmingham, Birmingham, United Kingdom.