ScAGCN: Graph Convolutional Network with Adaptive Aggregation Mechanism for scRNA-seq Data Dimensionality Reduction.
Journal:
Interdisciplinary sciences, computational life sciences
Published Date:
Apr 25, 2025
Abstract
With the development of single-cell RNA-sequencing (scRNA-seq) technology, scRNA-seq data analysis suffers huge challenges due to large scale, high dimensionality, high noise, and high sparsity. To achieve accurately embedded representation in the large-scale scRNA-seq data, we try to design a novel graph convolutional network with an adaptive aggregation mechanism. Based on the assumption that the aggregation order of different cells would be different, a graph convolutional network with an adaptive aggregation-based dimensionality reduction algorithm for scRNA-seq data is developed, named scAGCN. In scAGCN, a preprocessing consisting of quality control and feature selection is implemented. Then, an approximate nearest neighbor graph is rapidly constructed. Finally, a graph convolutional network with an adaptive aggregation mechanism is constructed, in which the neighborhood selection strategy based on node distribution and similarity boxplots is designed, and the aggregation function is optimized by defining a similarity measurement between neighborhood nodes and the central node. The results show that scAGCN outperforms existing dimensionality reduction methods on 15 real scRNA-seq datasets, especially in 10 large-scale scRNA-seq datasets.