AIMC Topic: RNA-Seq

Clear Filters Showing 1 to 10 of 180 articles

Cross modality learning of cell painting and transcriptomics data improves mechanism of action clustering and bioactivity modelling.

Scientific reports
In drug discovery, different data modalities (chemical structure, cell biology, quantum mechanics, etc.) are abundant, and their integration can help with understanding aspects of chemistry, biology, and their interactions. Within cell biology, cell ...

Dissecting crosstalk induced by cell-cell communication using single-cell transcriptomic data.

Nature communications
During cell-cell communication (CCC), pathways activated by different ligand-receptor pairs may have crosstalk with each other. While multiple methods have been developed to infer CCC networks and their downstream response using single-cell RNA-seq d...

scGANSL: Graph Attention Network with Subspace Learning for scRNA-seq Data Clustering.

Journal of chemical information and modeling
Single-cell RNA sequencing (scRNA-seq) has become a crucial technology for analyzing cellular diversity at the single-cell level. Cell clustering is crucial in scRNA-seq data analysis as it accurately identifies distinct cell types and uncovers poten...

SC2Spa: a deep learning based approach to map transcriptome to spatial origins at cellular resolution.

BMC bioinformatics
BACKGROUND: Understanding cellular heterogeneity within tissues hinges on knowledge of their spatial context. However, it is still challenging to accurately map cells to their spatial coordinates.

Error Reduction in Leukemia Machine Learning Classification With Conformal Prediction.

JCO clinical cancer informatics
PURPOSE: Recent advances in machine learning have led to the development of classifiers that predict molecular subtypes of acute lymphoblastic leukemia (ALL) using RNA-sequencing (RNA-seq) data. Although these models have shown promising results, the...

Identification of mitophagy-related biomarkers in severe acute pancreatitis: integration of WGCNA, machine learning algorithms and scRNA-seq.

Frontiers in immunology
BACKGROUND: Mitophagy is a highly conserved cellular process in eukaryotic cells that selectively clears dysfunctional or damaged mitochondria through autophagy mechanisms to maintain mitochondrial homeostasis. However, the role of mitophagy in the p...

scE2EGAE: enhancing single-cell RNA-Seq data analysis through an end-to-end cell-graph-learnable graph autoencoder with differentiable edge sampling.

Biology direct
BACKGROUND: Single-cell RNA sequencing (scRNA-Seq) technology reveals biological processes and molecular-level genomic information among individual cells. Numerous computational methods, including methods based on graph neural networks (GNNs), have b...

GRLGRN: graph representation-based learning to infer gene regulatory networks from single-cell RNA-seq data.

BMC bioinformatics
BACKGROUND: A gene regulatory network (GRN) is a graph-level representation that describes the regulatory relationships between transcription factors and target genes in cells. The reconstruction of GRNs can help investigate cellular dynamics, drug d...

Molecular features and diagnostic modeling of synovium- and IPFP-derived OA macrophages in the inflammatory microenvironment via scRNA-seq and machine learning.

Journal of orthopaedic surgery and research
BACKGROUND: Osteoarthritis (OA) is the leading cause of degenerative joint disease, with total joint replacement as the only definitive cure. However, no disease-modifying therapy is currently available. Inflammation and fibrosis in the infrapatellar...

Assessing concordance between RNA-Seq and NanoString technologies in Ebola-infected nonhuman primates using machine learning.

BMC genomics
This study evaluates the concordance between RNA sequencing (RNA-Seq) and NanoString technologies for gene expression analysis in non-human primates (NHPs) infected with Ebola virus (EBOV). A detailed comparison of both platforms revealed a strong co...