Sequence-based prediction of protein-peptide binding sites using support vector machine.

Journal: Journal of computational chemistry
Published Date:

Abstract

Protein-peptide interactions are essential for all cellular processes including DNA repair, replication, gene-expression, and metabolism. As most protein-peptide interactions are uncharacterized, it is cost effective to investigate them computationally as the first step. All existing approaches for predicting protein-peptide binding sites, however, are based on protein structures despite the fact that the structures for most proteins are not yet solved. This article proposes the first machine-learning method called SPRINT to make Sequence-based prediction of Protein-peptide Residue-level Interactions. SPRINT yields a robust and consistent performance for 10-fold cross validations and independent test. The most important feature is evolution-generated sequence profiles. For the test set (1056 binding and non-binding residues), it yields a Matthews' Correlation Coefficient of 0.326 with a sensitivity of 64% and a specificity of 68%. This sequence-based technique shows comparable or more accurate than structure-based methods for peptide-binding site prediction. SPRINT is available as an online server at: http://sparks-lab.org/. © 2016 Wiley Periodicals, Inc.

Authors

  • Ghazaleh Taherzadeh
    School of Information and Communication Technology, Griffith University, Parklands Drive, Southport, Queensland, 4215, Australia.
  • Yuedong Yang
    Institute for Glycomics and School of Information and Communication Technique, Griffith University, Parklands Dr. Southport, QLD 4222, Australia.
  • Tuo Zhang
    Weill Cornell Medical College, 1300 York Avenue, New York, New York, 10065.
  • Alan Wee-Chung Liew
    School of Information and Communication Technology, Griffith University, Parklands Drive, Southport, Queensland, 4215, Australia.
  • Yaoqi Zhou
    Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518106, China. Electronic address: zhouyq@szbl.ac.cn.