MultiP-Apo: A Multilabel Predictor for Identifying Subcellular Locations of Apoptosis Proteins.

Journal: Computational intelligence and neuroscience
Published Date:

Abstract

Apoptosis proteins play an important role in the mechanism of programmed cell death. Predicting subcellular localization of apoptosis proteins is an essential step to understand their functions and identify drugs target. Many computational prediction methods have been developed for apoptosis protein subcellular localization. However, these existing works only focus on the proteins that have one location; proteins with multiple locations are either not considered or assumed as not existing when constructing prediction models, so that they cannot completely predict all the locations of the apoptosis proteins with multiple locations. To address this problem, this paper proposes a novel multilabel predictor named MultiP-Apo, which can predict not only apoptosis proteins with single subcellular location but also those with multiple subcellular locations. Specifically, given a query protein, GO-based feature extraction method is used to extract its feature vector. Subsequently, the GO feature vector is classified by a new multilabel classifier based on the label-specific features. It is the first multilabel predictor ever established for identifying subcellular locations of multilocation apoptosis proteins. As an initial study, MultiP-Apo achieves an overall accuracy of 58.49% by jackknife test, which indicates that our proposed predictor may become a very useful high-throughput tool in this area.

Authors

  • Xiao Wang
    Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
  • Hui Li
    Department of Ophthalmology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
  • Rong Wang
    College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shanxi, China. Electronic address: wangrong91@nwsuaf.edu.cn.
  • Qiuwen Zhang
    School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China.
  • Weiwei Zhang
    Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
  • Yong Gan
    School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China.