Integration of data mining classification techniques and ensemble learning to identify risk factors and diagnose ovarian cancer recurrence.

Journal: Artificial intelligence in medicine
Published Date:

Abstract

Ovarian cancer is the second leading cause of deaths among gynecologic cancers in the world. Approximately 90% of women with ovarian cancer reported having symptoms long before a diagnosis was made. Literature shows that recurrence should be predicted with regard to their personal risk factors and the clinical symptoms of this devastating cancer. In this study, ensemble learning and five data mining approaches, including support vector machine (SVM), C5.0, extreme learning machine (ELM), multivariate adaptive regression splines (MARS), and random forest (RF), were integrated to rank the importance of risk factors and diagnose the recurrence of ovarian cancer. The medical records and pathologic status were extracted from the Chung Shan Medical University Hospital Tumor Registry. Experimental results illustrated that the integrated C5.0 model is a superior approach in predicting the recurrence of ovarian cancer. Moreover, the classification accuracies of C5.0, ELM, MARS, RF, and SVM indeed increased after using the selected important risk factors as predictors. Our findings suggest that The International Federation of Gynecology and Obstetrics (FIGO), Pathologic M, Age, and Pathologic T were the four most critical risk factors for ovarian cancer recurrence. In summary, the above information can support the important influence of personality and clinical symptom representations on all phases of guide interventions, with the complexities of multiple symptoms associated with ovarian cancer in all phases of the recurrent trajectory.

Authors

  • Chih-Jen Tseng
    School of Medicine, Chung Shan Medical University & Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taiwan, ROC.
  • Chi-Jie Lu
    Department of Industrial Management, Chien Hsin University of Science and Technology, Taiwan, ROC.
  • Chi-Chang Chang
    School of Medical Informatics, Chung-Shan Medical University, Taichung, Taiwan.
  • Gin-Den Chen
    School of Medicine, Chung Shan Medical University & Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taiwan, ROC.
  • Chalong Cheewakriangkrai
    Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.