AIMC Topic: Neoplasm Recurrence, Local

Clear Filters Showing 1 to 10 of 416 articles

Multimodal radiomics in glioma: predicting recurrence in the peritumoural brain zone using integrated MRI.

BMC medical imaging
BACKGROUND: Gliomas exhibit a high recurrence rate, particularly in the peritumoural brain zone after surgery. This study aims to develop and validate a radiomics-based model using preoperative fluid-attenuated inversion recovery (FLAIR) and T1-weigh...

Diagnostic systematic review and meta-analysis of machine learning in predicting biochemical recurrence of prostate cancer.

Scientific reports
Prostate cancer (PCa) is the most prevalent malignant tumor in males, and many patients remain at risk of biochemical recurrence (BCR) following initial treatment. Accurate prediction of BCR is vital for effective clinical management and treatment pl...

Multi-transcriptomics predicts clinical outcome in systemically untreated breast cancer patients with extensive follow-up.

Breast cancer research : BCR
BACKGROUND: Prognostic tools for determining patients with indolent breast cancers (BCs) are far from optimal, leading to extensive overtreatment. Several studies have demonstrated mRNAs, lncRNAs and miRNAs to have prognostic potential in BC. Because...

Developing a machine-learning model to enable treatment selection for neoadjuvant chemotherapy for esophageal cancer.

Scientific reports
Although neoadjuvant chemotherapy with docetaxel + cisplatin + 5-fluorouracil (CF) has been the standard treatment for stage II and III esophageal cancers, it is associated with severe adverse events caused by docetaxel. Consequently, this study aime...

Recurrence prediction of invasive ductal carcinoma from preoperative contrast-enhanced computed tomography using deep convolutional neural network.

Biomedical physics & engineering express
Predicting the risk of breast cancer recurrence is crucial for guiding therapeutic strategies, including enhanced surveillance and the consideration of additional treatment after surgery. In this study, we developed a deep convolutional neural networ...

Prediction of recurrence after surgery for pituitary adenoma using machine learning- based models: systematic review and meta-analysis.

BMC endocrine disorders
BACKGROUND: Predicting pituitary adenoma (PA) recurrence after surgical resection is critical for guiding clinical decision-making, and machine learning (ML) based models show great promise in improving the accuracy of these predictions. These models...

Radiomics analysis based on dynamic contrast-enhanced MRI for predicting early recurrence after hepatectomy in hepatocellular carcinoma patients.

Scientific reports
This study aimed to develop a machine learning model based on Magnetic Resonance Imaging (MRI) radiomics for predicting early recurrence after curative surgery in patients with hepatocellular carcinoma (HCC).A retrospective analysis was conducted on ...

Deep learning assessment of metastatic relapse risk from digitized breast cancer histological slides.

Nature communications
Accurate risk stratification is critical for guiding treatment decisions in early breast cancer. We present an artificial intelligence (AI)-based tool that analyzes digitized tumor slides to predict 5-year metastasis-free survival (MFS) in patients w...

Harnessing the machine learning and nomogram models: elevating prognostication in nonmetastatic gastric cancer with "double invasion" for personalized patient care.

European journal of medical research
OBJECTIVE: To develop and validate a machine learning framework combined with a nomogram for predicting recurrence after radical gastrectomy in patients with vascular and neural invasion.

Machine learning model for predicting recurrence following intensity-modulated radiation therapy in nasopharyngeal carcinoma.

World journal of surgical oncology
BACKGROUND: Nasopharyngeal carcinoma (NPC) exhibits unique histopathological characteristics compared to other head and neck cancers. The prognosis of NPC patients after intensity-modulated radiation therapy (IMRT) has not been fully studied, and the...