Image-based surrogate biomarkers for molecular subtypes of colorectal cancer.

Journal: Bioinformatics (Oxford, England)
Published Date:

Abstract

MOTIVATION: Whole genome expression profiling of large cohorts of different types of cancer led to the identification of distinct molecular subcategories (subtypes) that may partially explain the observed inter-tumoral heterogeneity. This is also the case of colorectal cancer (CRC) where several such categorizations have been proposed. Despite recent developments, the problem of subtype definition and recognition remains open, one of the causes being the intrinsic heterogeneity of each tumor, which is difficult to estimate from gene expression profiles. However, one of the observations of these studies indicates that there may be links between the dominant tumor morphology characteristics and the molecular subtypes. Benefiting from a large collection of CRC samples, comprising both gene expression and histopathology images, we investigated the possibility of building image-based classifiers able to predict the molecular subtypes. We employed deep convolutional neural networks for extracting local descriptors which were then used for constructing a dictionary-based representation of each tumor sample. A set of support vector machine classifiers were trained to solve different binary decision problems, their combined outputs being used to predict one of the five molecular subtypes.

Authors

  • Vlad Popovici
    Faculty of Medicine, Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic.
  • Eva Budinská
    Faculty of Science, Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czech Republic.
  • Ladislav Dušek
    Faculty of Medicine, Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic.
  • Michal Kozubek
    Faculty of Informatics, Masaryk University, Brno, Czech Republic.
  • Fred Bosman
    University Institute of Pathology, University of Lausanne, Switzerland.