Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning.

Journal: Scientific reports
Published Date:

Abstract

Cross-sectional X-ray imaging has become the standard for staging most solid organ malignancies. However, for some malignancies such as urinary bladder cancer, the ability to accurately assess local extent of the disease and understand response to systemic chemotherapy is limited with current imaging approaches. In this study, we explored the feasibility that radiomics-based predictive models using pre- and post-treatment computed tomography (CT) images might be able to distinguish between bladder cancers with and without complete chemotherapy responses. We assessed three unique radiomics-based predictive models, each of which employed different fundamental design principles ranging from a pattern recognition method via deep-learning convolution neural network (DL-CNN), to a more deterministic radiomics feature-based approach and then a bridging method between the two, utilizing a system which extracts radiomics features from the image patterns. Our study indicates that the computerized assessment using radiomics information from the pre- and post-treatment CT of bladder cancer patients has the potential to assist in assessment of treatment response.

Authors

  • Kenny H Cha
    Department of Radiology, University of Michigan, Ann Arbor, Michigan.
  • Lubomir Hadjiiski
    Department of Radiology, The University of Michigan, Ann Arbor, Michigan 48109-0904.
  • Heang-Ping Chan
    Department of Radiology, University of Michigan, Ann Arbor, Michigan.
  • Alon Z Weizer
    Department of Urology, Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan.
  • Ajjai Alva
    Department of Internal Medicine, Hematology-Oncology, University of Michigan, Ann Arbor, Michigan.
  • Richard H Cohan
    Department of Radiology, University of Michigan, Ann Arbor, Michigan.
  • Elaine M Caoili
    Department of Radiology, University of Michigan, Ann Arbor, Michigan.
  • Chintana Paramagul
    Department of Radiology, University of Michigan, Ann Arbor, Michigan.
  • Ravi K Samala
    Department of Radiology, University of Michigan, Ann Arbor, Michigan.