A Novel Energy-Efficient Approach for Human Activity Recognition.

Journal: Sensors (Basel, Switzerland)
Published Date:

Abstract

In this paper, we propose a novel energy-efficient approach for mobile activity recognition system (ARS) to detect human activities. The proposed energy-efficient ARS, using low sampling rates, can achieve high recognition accuracy and low energy consumption. A novel classifier that integrates hierarchical support vector machine and context-based classification (HSVMCC) is presented to achieve a high accuracy of activity recognition when the sampling rate is less than the activity frequency, i.e., the Nyquist sampling theorem is not satisfied. We tested the proposed energy-efficient approach with the data collected from 20 volunteers (14 males and six females) and the average recognition accuracy of around 96.0% was achieved. Results show that using a low sampling rate of 1Hz can save 17.3% and 59.6% of energy compared with the sampling rates of 5 Hz and 50 Hz. The proposed low sampling rate approach can greatly reduce the power consumption while maintaining high activity recognition accuracy. The composition of power consumption in online ARS is also investigated in this paper.

Authors

  • Lingxiang Zheng
    School of Information Science and Engineering, Xiamen University, Xiamen 361005, China. lxzheng@xmu.edu.cn.
  • Dihong Wu
    School of Information Science and Engineering, Xiamen University, Xiamen 361005, China. xmuwudh@stu.xmu.edu.cn.
  • Xiaoyang Ruan
    School of Information Science and Engineering, Xiamen University, Xiamen 361005, China. ruanxiaoyang@stu.xmu.edu.cn.
  • Shaolin Weng
    School of Information Science and Engineering, Xiamen University, Xiamen 361005, China. 23320141153268@stu.xmu.edu.cn.
  • Ao Peng
    School of Information Science and Engineering, Xiamen University, Xiamen 361005, China. pa@xmu.edu.cn.
  • Biyu Tang
    School of Information Science and Engineering, Xiamen University, Xiamen 361005, China. tby@xmu.edu.cn.
  • Hai Lu
    School of Information Science and Engineering, Xiamen University, Xiamen 361005, China. luhai@xmu.edu.cn.
  • Haibin Shi
    School of Information Science and Engineering, Xiamen University, Xiamen 361005, China. shihaibin@xmu.edu.cn.
  • Huiru Zheng
    School of Computing and Mathematics, University of Ulster, Jordanstown Campus, Shore Road, Newtownabbey BT37 0QB, UK.