Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches.

Journal: AJNR. American journal of neuroradiology
Published Date:

Abstract

Radiomics describes a broad set of computational methods that extract quantitative features from radiographic images. The resulting features can be used to inform imaging diagnosis, prognosis, and therapy response in oncology. However, major challenges remain for methodologic developments to optimize feature extraction and provide rapid information flow in clinical settings. Equally important, to be clinically useful, predictive radiomic properties must be clearly linked to meaningful biologic characteristics and qualitative imaging properties familiar to radiologists. Here we use a cross-disciplinary approach to highlight studies in radiomics. We review brain tumor radiologic studies (eg, imaging interpretation) through computational models (eg, computer vision and machine learning) that provide novel clinical insights. We outline current quantitative image feature extraction and prediction strategies with different levels of available clinical classes for supporting clinical decision-making. We further discuss machine-learning challenges and data opportunities to advance radiomic studies.

Authors

  • M Zhou
    From the Stanford Center for Biomedical Informatic Research (M.Z., O.G.).
  • J Scott
  • B Chaudhury
    Department of Radiology (J.S., B.C., S.N., R. Gillies, R. Gatenby), Moffitt Cancer Research Center, Tampa, Florida.
  • L Hall
    Department of Computer Science and Engineering (L.H., D.G.), University of South Florida, Tampa, Florida.
  • D Goldgof
    Department of Computer Science and Engineering (L.H., D.G.), University of South Florida, Tampa, Florida.
  • K W Yeom
    Department of Radiology (K.W.Y., M.I.), Stanford University, Stanford, California.
  • M Iv
    Department of Radiology (K.W.Y., M.I.), Stanford University, Stanford, California.
  • Y Ou
    Department of Radiology (Y.O., J.K.-C.), Massachusetts General Hospital, Boston, Massachusetts.
  • J Kalpathy-Cramer
  • S Napel
    Department of Radiology (J.S., B.C., S.N., R. Gillies, R. Gatenby), Moffitt Cancer Research Center, Tampa, Florida.
  • R Gillies
    Department of Radiology (J.S., B.C., S.N., R. Gillies, R. Gatenby), Moffitt Cancer Research Center, Tampa, Florida.
  • O Gevaert
    From the Stanford Center for Biomedical Informatic Research (M.Z., O.G.) Olivier.gevaert@stanford.edu Robert.gatenby@moffitt.org.
  • R Gatenby
    Department of Radiology (J.S., B.C., S.N., R. Gillies, R. Gatenby), Moffitt Cancer Research Center, Tampa, Florida Olivier.gevaert@stanford.edu Robert.gatenby@moffitt.org.